Lehrinhalte
1.Basic concepts of vibrations; impedance; electromechanical analogues,
2.sound field: wave equation; plane waves; sound absorption and dispersion; room absorption,
3.sound radiation: spherical, dipole, and cardioid source; linear arrays;circular piston membrane,
4.physiological and psychological acoustics: hearing organ; acoustic perception; speech production andspeech intelligibility,
5. electroacoustic transducers; reciprocity relations; electrostatic, piezoelectric, electrodynamic, and other transducers; directional microphones; microphone calibration,
6. acoustic measuring methods: measurements of fundamental acoustic quantities; acoustic testing chambers; vibration measurements,
7 analogical and digital sound recording: digital and analogical disc and magnetic tape methods; movie sound,
8. ultrasound and hypersound: generation and detection; applications
Literatur
H. Kuttruft, Akustik (Hilzel 2004); M. Zollner u. E. Zwicker, Elektroakustik, 3. Auflage (Springer, corrected reprint 1998); H. Fastl, E. Zwicker, Psychoacoustics (Springer 2005); J. Blauert, Communication Acoustics (Springer 2005); R.Lerch, G. Sessler u. D. Wolf, Technische Akustik (Springer 2009)
Voraussetzungen
Electrical Engineering I and II, Mathematics I to IV, Physics, Basics of Telecommunication
Online-Angebote
Moodle
Additional Information
[url]http://www.nt.tu-darmstadt.de/[/url]
1.Basic concepts of vibrations; impedance; electromechanical analogues,
2.sound field: wave equation; plane waves; sound absorption and dispersion; room absorption,
3.sound radiation: spherical, dipole, and cardioid source; linear arrays;circular piston membrane,
4.physiological and psychological acoustics: hearing organ; acoustic perception; speech production andspeech intelligibility,
5. electroacoustic transducers; reciprocity relations; electrostatic, piezoelectric, electrodynamic, and other transducers; directional microphones; microphone calibration,
6. acoustic measuring methods: measurements of fundamental acoustic quantities; acoustic testing chambers; vibration measurements,
7 analogical and digital sound recording: digital and analogical disc and magnetic tape methods; movie sound,
8. ultrasound and hypersound: generation and detection; applications
Literatur
H. Kuttruft, Akustik (Hilzel 2004); M. Zollner u. E. Zwicker, Elektroakustik, 3. Auflage (Springer, corrected reprint 1998); H. Fastl, E. Zwicker, Psychoacoustics (Springer 2005); J. Blauert, Communication Acoustics (Springer 2005); R.Lerch, G. Sessler u. D. Wolf, Technische Akustik (Springer 2009)
Voraussetzungen
Electrical Engineering I and II, Mathematics I to IV, Physics, Basics of Telecommunication
Online-Angebote
Moodle
Additional Information
[url]http://www.nt.tu-darmstadt.de/[/url]
- Lehrende: Mario Kupnik
- Lehrende: Gerhard Sessler
Semester: WT 2018/19
Lehrinhalte
1) Discrete-Time Signals and Linear Systems Sampling and Reconstruction of Analog Signals
2) Digital Filter Design Filter Design Principles; Linear Phase Filters; Finite Impulse Response Filters; Infinite Impulse Response Filters; Implementations
3) Digital Spectral Analysis - Random Signals; Nonparametric Methods for Spectrum Estimation; Parametric Spectrum Estimation; Applications;
4) Kalman Filter
Literatur
Course manuscript
Additional References:
[list]
[*]A. Oppenheim, W. Schafer: Discrete-time Signal Processing, 2nd ed.
[*]J.F. Böhme: Stochastische Signale, Teubner Studienbücher, 1998
[/list]
Voraussetzungen
Deterministic signals and systems theory
Additional Information
[url]http://www.spg.tu-darmstadt.de/[/url]
1) Discrete-Time Signals and Linear Systems Sampling and Reconstruction of Analog Signals
2) Digital Filter Design Filter Design Principles; Linear Phase Filters; Finite Impulse Response Filters; Infinite Impulse Response Filters; Implementations
3) Digital Spectral Analysis - Random Signals; Nonparametric Methods for Spectrum Estimation; Parametric Spectrum Estimation; Applications;
4) Kalman Filter
Literatur
Course manuscript
Additional References:
[list]
[*]A. Oppenheim, W. Schafer: Discrete-time Signal Processing, 2nd ed.
[*]J.F. Böhme: Stochastische Signale, Teubner Studienbücher, 1998
[/list]
Voraussetzungen
Deterministic signals and systems theory
Additional Information
[url]http://www.spg.tu-darmstadt.de/[/url]
- Lehrende: Abdelhak Zoubir
Semester: WT 2018/19
Lehrinhalte
Units and Equations: Unit systems, equation writing.
Basic definitions: Charge, current, voltage, resistance, energy and power.
Currents and voltages in electrical circuits: Ohmic law, node and mesh equations, parallel and series connections, current and voltage measurement, linear and nonlinear elements, superposition method, star-delta-transformation, node and mesh analysis in linear circuits, controlled sources.
AC systems: Time-dependent currents and voltages, steady-state mode sinusoidal currents and voltages in linear RLC-circuits, phasor diagrams, resonances in RLC circuits, AC power, locus diagrams, two-port networks, transformer, polyphase systems.
Literatur
Frohne, H. u.a. Moeller Grundlagen der Elektrotechnik
Clausert, H. u.a. Grundgebiete der Elektrotechnik 1 2
Online-Angebote
moodle
Units and Equations: Unit systems, equation writing.
Basic definitions: Charge, current, voltage, resistance, energy and power.
Currents and voltages in electrical circuits: Ohmic law, node and mesh equations, parallel and series connections, current and voltage measurement, linear and nonlinear elements, superposition method, star-delta-transformation, node and mesh analysis in linear circuits, controlled sources.
AC systems: Time-dependent currents and voltages, steady-state mode sinusoidal currents and voltages in linear RLC-circuits, phasor diagrams, resonances in RLC circuits, AC power, locus diagrams, two-port networks, transformer, polyphase systems.
Literatur
Frohne, H. u.a. Moeller Grundlagen der Elektrotechnik
Clausert, H. u.a. Grundgebiete der Elektrotechnik 1 2
Online-Angebote
moodle
- Lehrende: Jutta Hanson
- Lehrende: Carl Schweinsberg
Semester: WT 2018/19
Lehrinhalte
1) Introduction to MATLAB
2) Discrete-Time Signals and Systems
3) Frequency-Domain Analysis using the DFT
4) Digital FIR Filter Design
5) IIR Filter Design using Analog Prototypes
6) Nonparametric Spectrum Estimation
7) Parametric Spectrum Estimation.
Literatur
Lab manual
Voraussetzungen
Deterministic signals and systems theory
Further Grading Information
The course can be done in parallel or after the course DSP.
Additional Information
[url]http://www.spg.tu-darmstadt.de/[/url]
1) Introduction to MATLAB
2) Discrete-Time Signals and Systems
3) Frequency-Domain Analysis using the DFT
4) Digital FIR Filter Design
5) IIR Filter Design using Analog Prototypes
6) Nonparametric Spectrum Estimation
7) Parametric Spectrum Estimation.
Literatur
Lab manual
Voraussetzungen
Deterministic signals and systems theory
Further Grading Information
The course can be done in parallel or after the course DSP.
Additional Information
[url]http://www.spg.tu-darmstadt.de/[/url]
- Lehrende: Gelöschter User (TU-ID gelöscht)
- Lehrende: Abdelhak Zoubir
Semester: WT 2018/19
Lehrinhalte
Signal detection and parameter estimation are fundamental signal processing tasks. In fact, they appear in many common engineering operations under a variety of names. In this course, the theory behind detection and estimation will be presented, allowing a better understanding of how (and why) to design "good" detection and estimation schemes.
These lectures will cover: Fundamentals
Detection Theory Hypothesis Testing Bayesian Tests
Ideal Observer Tests
Neyman-Pearson Tests
Receiver Operating Characteristics
Uniformly Most Powerful Tests
The Matched Filter Estimation Theory Types of Estimators
Maxmimum Likelihood Estimators
Sufficiency and the Fisher-Neyman/Factorisation Criterion
Unbiasedness and Minimum variance
Fisher Information and the CRB
Asymptotic properties of the MLE
Literatur
[list]
[*]Lecture slides
[*]Jerry D. Gibson and James L. Melsa. Introduction to Nonparametric Detection with Applications. IEEE Press, 1996.
[*]S. Kassam. Signal Detection in Non-Gaussian Noise. Springer Verlag, 1988.
[*]S. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall,
1993.
[*]S. Kay. Fundamentals of Statistical Signal Processing: Detection Theory. Prentice Hall, 1998.
[*]E. L. Lehmann. Testing Statistical Hypotheses. Springer Verlag, 2nd edition, 1997.
[*]E. L. Lehmann and George Casella. Theory of Point Estimation. Springer Verlag, 2nd edition, 1999.
[*]Leon-Garcia. Probability and Random Processes for Electrical Engineering. Addison Wesley, 2nd edition, 1994.
[*]P. Peebles. Probability, Random Variables, and Random Signal Principles. McGraw-Hill, 3rd edition, 1993.
[*]H. Vincent Poor. An Introduction to Signal Detection and Estimation. Springer Verlag, 2nd edition,
1994.
[*]Louis L. Scharf. Statistical Signal Processing: Detection, Estimation, and Time Series Analysis. Pearson Education POD, 2002.
[*]Harry L. Van Trees. Detection, Estimation, and Modulation Theory, volume I,II,III,IV. John Wiley & Sons, 2003.
[*]A. M. Zoubir and D. R. Iskander. Bootstrap Techniques for Signal Processing. Cambridge University Press, May 2004.
[/list]
Voraussetzungen
DSP, general interest in signal processing
Signal detection and parameter estimation are fundamental signal processing tasks. In fact, they appear in many common engineering operations under a variety of names. In this course, the theory behind detection and estimation will be presented, allowing a better understanding of how (and why) to design "good" detection and estimation schemes.
These lectures will cover: Fundamentals
Detection Theory Hypothesis Testing Bayesian Tests
Ideal Observer Tests
Neyman-Pearson Tests
Receiver Operating Characteristics
Uniformly Most Powerful Tests
The Matched Filter Estimation Theory Types of Estimators
Maxmimum Likelihood Estimators
Sufficiency and the Fisher-Neyman/Factorisation Criterion
Unbiasedness and Minimum variance
Fisher Information and the CRB
Asymptotic properties of the MLE
Literatur
[list]
[*]Lecture slides
[*]Jerry D. Gibson and James L. Melsa. Introduction to Nonparametric Detection with Applications. IEEE Press, 1996.
[*]S. Kassam. Signal Detection in Non-Gaussian Noise. Springer Verlag, 1988.
[*]S. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall,
1993.
[*]S. Kay. Fundamentals of Statistical Signal Processing: Detection Theory. Prentice Hall, 1998.
[*]E. L. Lehmann. Testing Statistical Hypotheses. Springer Verlag, 2nd edition, 1997.
[*]E. L. Lehmann and George Casella. Theory of Point Estimation. Springer Verlag, 2nd edition, 1999.
[*]Leon-Garcia. Probability and Random Processes for Electrical Engineering. Addison Wesley, 2nd edition, 1994.
[*]P. Peebles. Probability, Random Variables, and Random Signal Principles. McGraw-Hill, 3rd edition, 1993.
[*]H. Vincent Poor. An Introduction to Signal Detection and Estimation. Springer Verlag, 2nd edition,
1994.
[*]Louis L. Scharf. Statistical Signal Processing: Detection, Estimation, and Time Series Analysis. Pearson Education POD, 2002.
[*]Harry L. Van Trees. Detection, Estimation, and Modulation Theory, volume I,II,III,IV. John Wiley & Sons, 2003.
[*]A. M. Zoubir and D. R. Iskander. Bootstrap Techniques for Signal Processing. Cambridge University Press, May 2004.
[/list]
Voraussetzungen
DSP, general interest in signal processing
- Lehrende: Abdelhak Zoubir
Semester: WT 2018/19