Lehrinhalte
MATHEMATICAL BACKGROUND:
Real vector spaces, second-order tensors, components, eigenvalues and
invariants, higher-order tensors, Euclidean point space - Coordinates,
derivatives in n-space, derivatives in normed vector spaces, derivatives
in Euclidean point spaces (covariant directional derivative, Lie
derivative), integration of tensor fields.

Literatur
1) J. Altenbach; H. Altenbach:
Einführung in die Kontinuumsmechanik
Teubner, 1994

2) R. de Boer:
Vektor- und Tensorrechnung für Ingenieure
Springer-VErlag, 1982

3) R.M. Bowen; C.-C. Wang:
Introduction to Vectors and Tensors, Volume I and II
Plenum Press, 1976

4) P. Chadwick:
Continuum Mechanics
George Allen & Unwin, 1976

5) M.E. Gurtin:
An Introduction to Continuum Mechanics
Academic Press, 1981

6) P. Haupt:
Mathematische Grundlagen der Kontinuumsmechanik
Vorlesungsmanuskript, GH-Kassel, Institut für Mechanik
7) E. Klingbeil:
Tensorrechnung für Ingenieure
Wissenschaftsverlag, 1989

8) D.C. Leigh
Nonlinear Continuums Mechanics
McGraw-Hill, 1968

9) J.E. Marsden; Th.J.R. Hughes:
Mathematical Foundations of Elasticity
Dover Publications, 1983

10) R.W. Ogden:
Non-Linear Elastic Deformations
John Wiley & Sons, 1984

11) M. Spivak:
Differential Geometrie I & II
Berkeley, 1975

12) C.A. Truesdell:
A First Course in Rational Continuum Mechanics, Vol. I
Academic Press, 1977

13) C.-C. Wang; C.A. Truesdell:
Introduction to Rational Elasticity
Noordhoff, 1973

Voraussetzungen
Basic course in mathematics and mechanics.

Semester: ST 2021