Lehrinhalte
stochastic models of financial markets in discrete time, (model of periodn), derivatives (options and futures), trading strategies and arbitrage, equivalent risk-neutral probability measures, securing and valuation of options, the Black-Scholes formula
Literature
Bingham, Kiesel: Risk-Neutral Valuation;
Elliott, Kopp: Mathematics of Financial Markets;
Irle: Finanzmathematik;
Musiela, Rutkowski: Martingale Methods in Financial Modelling;
Pliska: Introduction to Mathematical Finance;
Shreve: Stochastic Calculus for Finance I (Discrete Time Models)
Voraussetzungen
recommended: Introduction to Stochastics, Probability Theory
stochastic models of financial markets in discrete time, (model of periodn), derivatives (options and futures), trading strategies and arbitrage, equivalent risk-neutral probability measures, securing and valuation of options, the Black-Scholes formula
Literature
Bingham, Kiesel: Risk-Neutral Valuation;
Elliott, Kopp: Mathematics of Financial Markets;
Irle: Finanzmathematik;
Musiela, Rutkowski: Martingale Methods in Financial Modelling;
Pliska: Introduction to Mathematical Finance;
Shreve: Stochastic Calculus for Finance I (Discrete Time Models)
Voraussetzungen
recommended: Introduction to Stochastics, Probability Theory
- Lecturer: Frank Aurzada
 - Lecturer: Volker Martin Betz
 - Lecturer: Gelöschter User (TU-ID gelöscht)
 
        Semester: ST 2021
    
        Jupyterhub API Server: https://tu-jupyter-t.ca.hrz.tu-darmstadt.de