Lehrinhalte
- Statistical Methods for Machine Learning
- Refreshers on Statistics, Optimization and Linear Algebra
- Bayes Decision Theory
- Probability Density Estimation
- Non-Parametric Models
- Mixture Models and EM-Algorithms
- Linear Models for Classification and Regression
- Statistical Learning Theory
- Kernel Methods for Classification and Regression
Literature
1. C.M. Bishop, Pattern Recognition and Machine Learning (2006), Springer
2. K.P. Murphy, Machine Learning: a Probabilistic Perspective (2012), MIT Press
3. D. Barber, Bayesian Reasoning and Machine Learning (2012), Cambridge University Press
4. T. Hastie, R. Tibshirani, and J. Friedman (2003), The Elements of Statistical Learning, Springer Verlag
5. D. MacKay, Information Theory, Inference, and Learning Algorithms (2003), Cambridge University Press
6. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification (2nd ed. 2001), Willey-Interscience
7. T.M. Mitchell, Machine Learning (1997), McGraw-Hill
Bemerkung Webportal
[b]Area:[/b] Human Computer Systems
[b]Registration:[/b]
Mittwoch, 15.04.09 09.50 - 11.20 S3 05/073
[b]Preliminary discussion:[/b]
Mittwoch, 15.04.09 09.50 - 11.20 S3 05/073
Online-Angebote
moodle
- Statistical Methods for Machine Learning
- Refreshers on Statistics, Optimization and Linear Algebra
- Bayes Decision Theory
- Probability Density Estimation
- Non-Parametric Models
- Mixture Models and EM-Algorithms
- Linear Models for Classification and Regression
- Statistical Learning Theory
- Kernel Methods for Classification and Regression
Literature
1. C.M. Bishop, Pattern Recognition and Machine Learning (2006), Springer
2. K.P. Murphy, Machine Learning: a Probabilistic Perspective (2012), MIT Press
3. D. Barber, Bayesian Reasoning and Machine Learning (2012), Cambridge University Press
4. T. Hastie, R. Tibshirani, and J. Friedman (2003), The Elements of Statistical Learning, Springer Verlag
5. D. MacKay, Information Theory, Inference, and Learning Algorithms (2003), Cambridge University Press
6. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification (2nd ed. 2001), Willey-Interscience
7. T.M. Mitchell, Machine Learning (1997), McGraw-Hill
Bemerkung Webportal
[b]Area:[/b] Human Computer Systems
[b]Registration:[/b]
Mittwoch, 15.04.09 09.50 - 11.20 S3 05/073
[b]Preliminary discussion:[/b]
Mittwoch, 15.04.09 09.50 - 11.20 S3 05/073
Online-Angebote
moodle
- Lehrende: Stefan Roth
- Lehrende: Simone Schaub-Meyer
Semester: Verão 2021