Lehrinhalte
1) Fundamentals of electromagnetic field theory – Maxwell`s equations in differential and integral form; Electromagnetic waves: propagation in free space, polarization, reflection/refraction.
2) Numerical solution of electromagnetic field problems – Space discretization with surface and volume meshes; Main numerical algorithms for discrete local approximation of Maxwell’s equations; Finite Integration Technique; Time and frequency domain solution methods; Stability, convergence.
3) Practical aspects of electromagnetic simulation – Introduction to accuracy issues; Preprocessing: 3D geometry, computational domain, boundary conditions, electromagnetic field sources; Time vs frequency domain; Postprocessing; Network parameter extraction.
4) Application to typical high-frequency devices: Waveguide / resonator structures, planar structures

Literatur
Course manuscript
Additional References:
[list]
[*]D.K. Cheng: Field and Wave Electromagnetics. Addison-Wesley, New York, 1992
[*]C.A. Balanis: Advanced Engineering Electromagnetics. Wiley, New York, 1989
[*]Andrew F. Peterson et al. Computational Methods for Electromagnetics. Wiley-IEEE Press, 1997.
[/list]

Voraussetzungen
Fundamentals of electrodynamics (Grundlagen der Elektrodynamik)

Online-Angebote
moodle

Stammraum Informationen
S217/103

Semester: WiSe 2021/22