Lehrinhalte
Curves: arc length and curvature; selected global theorems. Surface theory: fundamental forms, shape operator; principal curvatures, Gaussian and mean curvature. Compatibility equations, geodesics, parallel transport, Gauss-Bonnet Theorem. Topics from discrete differential geometry, such as: curvature of polygonal curves and polyhedral surfaces, Bézier curves and surfaces.
Literature
Bär: Elementare Differentialgeometrie
Montiel, Ros: Curves and surfaces
Hoschek, Lasser: Grundlagen der Geometrischen Datenverarbeitung
Voraussetzungen
recommended: Analysis, Ordinary Differetial Equations, Linear Algebra
Curves: arc length and curvature; selected global theorems. Surface theory: fundamental forms, shape operator; principal curvatures, Gaussian and mean curvature. Compatibility equations, geodesics, parallel transport, Gauss-Bonnet Theorem. Topics from discrete differential geometry, such as: curvature of polygonal curves and polyhedral surfaces, Bézier curves and surfaces.
Literature
Bär: Elementare Differentialgeometrie
Montiel, Ros: Curves and surfaces
Hoschek, Lasser: Grundlagen der Geometrischen Datenverarbeitung
Voraussetzungen
recommended: Analysis, Ordinary Differetial Equations, Linear Algebra
- Lehrende: Gelöschter User
- Lehrende: Kai Bouaraba
- Lehrende: Ulrich Reif
Semester: Inverno 2021/22