Lehrinhalte
1) Gravitation and Special Relativity
2) Mathematical structure of Pseudo-Riemannian spaces
3) Fundamental physical laws of General Relativity
4) Isotropic solutions of Einstein's field equaltions and Black Holes
5) Cosmological models
Literature
J. B. Hartle, Gravity: An Introduction to Einstein's General Relativity (Pearson, 2013)
B. Schutz, A first course in General Relativity (Cambridge UP, Cambridge, 2012)
S.M. Caroll, Spacetime and Geometry (Cambridge UP, Cambridge, 2019)
R.M. Wald, General Realtivity (Chicago UP, Chicago, 1984)
P. Szekeres, A Course in Modern Mathematical Physics: Groups, Hilbert Spaces and Differntial Geometry (Cambridge UP, Cambridge, 2004)
Voraussetzungen
Classical Mechanics and Electrodynamics, Quantum Mechanics
Erwartete Teilnehmerzahl
25
Online-Angebote
moodle
1) Gravitation and Special Relativity
2) Mathematical structure of Pseudo-Riemannian spaces
3) Fundamental physical laws of General Relativity
4) Isotropic solutions of Einstein's field equaltions and Black Holes
5) Cosmological models
Literature
J. B. Hartle, Gravity: An Introduction to Einstein's General Relativity (Pearson, 2013)
B. Schutz, A first course in General Relativity (Cambridge UP, Cambridge, 2012)
S.M. Caroll, Spacetime and Geometry (Cambridge UP, Cambridge, 2019)
R.M. Wald, General Realtivity (Chicago UP, Chicago, 1984)
P. Szekeres, A Course in Modern Mathematical Physics: Groups, Hilbert Spaces and Differntial Geometry (Cambridge UP, Cambridge, 2004)
Voraussetzungen
Classical Mechanics and Electrodynamics, Quantum Mechanics
Erwartete Teilnehmerzahl
25
Online-Angebote
moodle
- Lehrende: AlberGernot
Semester: WT 2022/23