Lehrinhalte
Konvergenz von Funktionenfolgen, Potenzreihen, Topologie metrischer Räume, Normen auf dem R^n, Differentialrechnung mehrerer Variablen, partielle Ableitungen, Ableitungsregeln, Gradient, Höhere Ableitungen und Satz von Taylor in mehreren Variablen, Lokale Extrema, Lokale Umkehrbarkeit und implizite Funktionen, Mehrdimensionale Integration: Rechentechniken, Kurven im R^n, Integralsätze von Gauß und Stokes
Literatur
K. Königsberger: Analysis 1,2 , Springer
O. Forster: Analysis I & II. Vieweg
H. Heuser: Lehrbuch der Analysis 1, 2, Teubner.
W. Rudin: Principles of Mathematical Analysis, McGraw-Hill
Voraussetzungen
Analysis 1
(Teilnahme ohne Nachweis möglich)
Bemerkung Webportal
die Veranstaltung ist bis auf die Sprache identisch mit Analysis 2 (englisch)
Online-Angebote
moodle
Konvergenz von Funktionenfolgen, Potenzreihen, Topologie metrischer Räume, Normen auf dem R^n, Differentialrechnung mehrerer Variablen, partielle Ableitungen, Ableitungsregeln, Gradient, Höhere Ableitungen und Satz von Taylor in mehreren Variablen, Lokale Extrema, Lokale Umkehrbarkeit und implizite Funktionen, Mehrdimensionale Integration: Rechentechniken, Kurven im R^n, Integralsätze von Gauß und Stokes
Literatur
K. Königsberger: Analysis 1,2 , Springer
O. Forster: Analysis I & II. Vieweg
H. Heuser: Lehrbuch der Analysis 1, 2, Teubner.
W. Rudin: Principles of Mathematical Analysis, McGraw-Hill
Voraussetzungen
Analysis 1
(Teilnahme ohne Nachweis möglich)
Bemerkung Webportal
die Veranstaltung ist bis auf die Sprache identisch mit Analysis 2 (englisch)
Online-Angebote
moodle
- Lehrende: Tim Binz
- Lehrende: Miriam Buck
- Lehrende: Christian Stinner
Semester: SoSe 2022