Course Contents
Modeling: systems of linear equalities and inequalities in integers; theory: integer programs, polyhedral combinatorics; methods: exact algorithms, approximation, decomposition methods algorithms, heuristics, relaxations
Literature
Nemhauser, Wolsey: Integer and Combinatorial Optimization, Wiley 1988,
Schrijver: Theory of Linear and Integer Programming, Wiley 1986,
Korye, Vygen: Combinatorial Optimization, Springer 2012
Preconditions
recommended: Introduction to Optimization, Algorithmic Discrete Mathematics
Modeling: systems of linear equalities and inequalities in integers; theory: integer programs, polyhedral combinatorics; methods: exact algorithms, approximation, decomposition methods algorithms, heuristics, relaxations
Literature
Nemhauser, Wolsey: Integer and Combinatorial Optimization, Wiley 1988,
Schrijver: Theory of Linear and Integer Programming, Wiley 1986,
Korye, Vygen: Combinatorial Optimization, Springer 2012
Preconditions
recommended: Introduction to Optimization, Algorithmic Discrete Mathematics
- Lehrende: Maximilian Gläser
- Lehrende: Marc Pfetsch
Semester: Verão 2022