Lehrinhalte
Algebraic integers, Dedekind rings, ideals, prime ideal decomposition, ideal class group, unit group, extensions of Dedekind rings, ramification, orders, possibly further topics as the theory of valuations, L-series or introduction to class field theory
Literature
Neukirch: Algebraic number theory, Springer
Lang: Algebraic number theory, Addison-Wesley
Milne: Algebraic number theory, course notes
Zagier: Zetafunktionen und quadratische Zahlkörper, Springer
Cassels, Fröhlich: Algebraic number theory, Thompson
Voraussetzungen
recommended: Algebra
Algebraic integers, Dedekind rings, ideals, prime ideal decomposition, ideal class group, unit group, extensions of Dedekind rings, ramification, orders, possibly further topics as the theory of valuations, L-series or introduction to class field theory
Literature
Neukirch: Algebraic number theory, Springer
Lang: Algebraic number theory, Addison-Wesley
Milne: Algebraic number theory, course notes
Zagier: Zetafunktionen und quadratische Zahlkörper, Springer
Cassels, Fröhlich: Algebraic number theory, Thompson
Voraussetzungen
recommended: Algebra
- Lehrende: Thibaud van den Hove
- Lehrende: Torsten Wedhorn
Semester: Verão 2022