Lehrinhalte
1. Basic elements of Quantum Mechanics
2. Scattering theory
Lippmann-Schwinger equation, Born approximation, optical theorem, method of partial waves, scattering phase shifts, analytic properties of the S-matrix, resonance scattering
3. Relativistic quantum mechanics
Relativistic wave equations: Klein-Gordon and Dirac equation, Coulomb problem, non-relativistic limit, Lorentz transformations, spin, Dirac hole theory and antiparticles
4. Second quantization and field theory
Identical particles and multi-particle states: Bosons and Fermions, Fock space, field operators, many-body systems
Literatur
F. Schwabl, Quantum Mechanics, Springer [ebook]
F. Schwabl, Advanced Quantum Mechanics, Springer [ebook]
J.J. Sakurai, J. Napolitano, Modern Quantum Mechanics, Pearson
J.D. Bjorken, S.D. Drell, Relativistic quantum mechanics, McGraw-Hill
G. Münster, Quantentheorie, de Gruyter [ebook]
Online-Angebote
moodle
Website of the course: [url]https://theorie.ikp.physik.tu-darmstadt.de/nhq/teaching_aqm_22-23.html[/url]
1. Basic elements of Quantum Mechanics
2. Scattering theory
Lippmann-Schwinger equation, Born approximation, optical theorem, method of partial waves, scattering phase shifts, analytic properties of the S-matrix, resonance scattering
3. Relativistic quantum mechanics
Relativistic wave equations: Klein-Gordon and Dirac equation, Coulomb problem, non-relativistic limit, Lorentz transformations, spin, Dirac hole theory and antiparticles
4. Second quantization and field theory
Identical particles and multi-particle states: Bosons and Fermions, Fock space, field operators, many-body systems
Literatur
F. Schwabl, Quantum Mechanics, Springer [ebook]
F. Schwabl, Advanced Quantum Mechanics, Springer [ebook]
J.J. Sakurai, J. Napolitano, Modern Quantum Mechanics, Pearson
J.D. Bjorken, S.D. Drell, Relativistic quantum mechanics, McGraw-Hill
G. Münster, Quantentheorie, de Gruyter [ebook]
Online-Angebote
moodle
Website of the course: [url]https://theorie.ikp.physik.tu-darmstadt.de/nhq/teaching_aqm_22-23.html[/url]
- Lehrende: Michael Buballa
Semester: WiSe 2022/23