Course Contents
Formulation of problems in electromagnetics (Poisson equation, Helmholtz equation, eddy current model, Maxwell equations), variational formulation in Hilbert spaces and solution theory, Galerkin discretization and Numerical Analysis
Literature
Monk, Finite Element Methods for Maxwell's Equations, Oxford Scientific Publications
Alonso-Rodriguez, Valli, Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications, Springer,
Braess, Finite Elements, Springer
Preconditions
Grundlagen in Numerik, Grundkenntnisse partieller Differentialgleichungen
Formulation of problems in electromagnetics (Poisson equation, Helmholtz equation, eddy current model, Maxwell equations), variational formulation in Hilbert spaces and solution theory, Galerkin discretization and Numerical Analysis
Literature
Monk, Finite Element Methods for Maxwell's Equations, Oxford Scientific Publications
Alonso-Rodriguez, Valli, Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications, Springer,
Braess, Finite Elements, Springer
Preconditions
Grundlagen in Numerik, Grundkenntnisse partieller Differentialgleichungen
- Lecturer: Kersten Schmidt
Semester: WT 2022/23