Lehrinhalte
Real and complex numbers, completeness, convergence of sequences and series, topology of the real numbers, compactness, notion of a function, continuity, elementary functions, differentiation, Mean Value Theorem, Taylors Theorem, integral, Fundamental Theorem of Calculus, techniques of integration
Literature
O. Forster: Analysis I, II. Vieweg
H. Heuser: Lehrbuch der Analysis 1, 2, Teubner
K. Königsberger: Analysis 1, 2, Springer
Charles R. MacCluer, Honors Calculus, Princeton Univ. Press
W. Rudin: Principles of Mathematical Analysis, McGraw-Hill
Voraussetzungen
none
Real and complex numbers, completeness, convergence of sequences and series, topology of the real numbers, compactness, notion of a function, continuity, elementary functions, differentiation, Mean Value Theorem, Taylors Theorem, integral, Fundamental Theorem of Calculus, techniques of integration
Literature
O. Forster: Analysis I, II. Vieweg
H. Heuser: Lehrbuch der Analysis 1, 2, Teubner
K. Königsberger: Analysis 1, 2, Springer
Charles R. MacCluer, Honors Calculus, Princeton Univ. Press
W. Rudin: Principles of Mathematical Analysis, McGraw-Hill
Voraussetzungen
none
- Lecturer: Volker Martin Betz
Semester: WT 2022/23