Course Contents
Convergence of sequences of functions, power series, topology of metric spaces, norms on R^n, differentiation of functions of several variables, partial derivatives, rules of differentation, gradient, higher derivatives and Taylor`s theorem in several variables, local extrema, inverse and implicit function theorems, integration on R^n, curves in R^n, integral theorems of Gauß and Stokes
Convergence of sequences of functions, power series, topology of metric spaces, norms on R^n, differentiation of functions of several variables, partial derivatives, rules of differentation, gradient, higher derivatives and Taylor`s theorem in several variables, local extrema, inverse and implicit function theorems, integration on R^n, curves in R^n, integral theorems of Gauß and Stokes
- Lehrende: Volker Martin Betz
- Lehrende: Andreas Klippel
- Lehrende: Mino Nicola Kraft
Semester: ST 2023