Lehrinhalte
Kurven: Bogenlänge, Krümmung; globale Kurventheorie, z.B. Umlaufsatz. Flächentheorie: Fundamentalformen, Weingarten-Abbildung, Hauptkrümmungen, Gauß- und mittlere Krümmung. Hyperflächengleichungen, Geodätische, Parallelverschiebung, Satz von Gauß-Bonnet. Themen der diskreten Differentialgeometrie: z.B. Krümmungsbegriffe für polygonale Kurven und polyedrische Flächen; Bézierkurven und -flächen.
Literatur
Bär: Elementare Differentialgeometrie
Montiel, Ros: Curves and surfaces
Hoschek, Lasser: Grundlagen der Geometrischen Datenverarbeitung
Voraussetzungen
empfohlen: Analysis, gew. Differentialgleichungen, Lineare Algebra
Online-Angebote
moodle
Kurven: Bogenlänge, Krümmung; globale Kurventheorie, z.B. Umlaufsatz. Flächentheorie: Fundamentalformen, Weingarten-Abbildung, Hauptkrümmungen, Gauß- und mittlere Krümmung. Hyperflächengleichungen, Geodätische, Parallelverschiebung, Satz von Gauß-Bonnet. Themen der diskreten Differentialgeometrie: z.B. Krümmungsbegriffe für polygonale Kurven und polyedrische Flächen; Bézierkurven und -flächen.
Literatur
Bär: Elementare Differentialgeometrie
Montiel, Ros: Curves and surfaces
Hoschek, Lasser: Grundlagen der Geometrischen Datenverarbeitung
Voraussetzungen
empfohlen: Analysis, gew. Differentialgleichungen, Lineare Algebra
Online-Angebote
moodle
- Lehrende: Kai Bouaraba
- Lehrende: Ulrich Reif
- Lehrende: Jona Seidel
Semester: WiSe 2023/24