Course Contents
Real and complex numbers, completeness, convergence of sequences and series, topology of the real numbers, compactness, notion of a function, continuity, elementary functions, differentiation, Mean Value Theorem, Taylor’s Theorem, integral, Fundamental Theorem of Calculus, techniques of integration.
Literature
O. Forster: Analysis I, II. Vieweg
H. Heuser: Lehrbuch der Analysis 1, 2, Teubner
K. Königsberger: Analysis 1, 2, Springer
Charles R. MacCluer, Honors Calculus, Princeton Univ. Press
W. Rudin: Principles of Mathematical Analysis, McGraw-Hill
Preconditions
none
Online Offerings
moodle
Real and complex numbers, completeness, convergence of sequences and series, topology of the real numbers, compactness, notion of a function, continuity, elementary functions, differentiation, Mean Value Theorem, Taylor’s Theorem, integral, Fundamental Theorem of Calculus, techniques of integration.
Literature
O. Forster: Analysis I, II. Vieweg
H. Heuser: Lehrbuch der Analysis 1, 2, Teubner
K. Königsberger: Analysis 1, 2, Springer
Charles R. MacCluer, Honors Calculus, Princeton Univ. Press
W. Rudin: Principles of Mathematical Analysis, McGraw-Hill
Preconditions
none
Online Offerings
moodle
- Lehrende: Gelöschter User
- Lehrende: Karsten Große-Brauckmann
- Lehrende: Philipp Käse
Semester: WT 2023/24