Course Contents
The course covers the following topics:
[list]
[*]Python programming basics
[*]Data science introduction
[*]Data storage and formats
[*]Data exploration and visualization
[*]Statistical methods and inference
[list]
[*]Descriptive statistics (uni & bivariate)
[*]Inferential statistics
[/list]
[*]Feature extraction
[list]
[*]Time Series Data
[*]Image data
[*]Audio data
[/list]
[*]Statistical learning
[list]
[*]Cross-validation, overfitting, annotation
[*]Regression
[*]Classification
[/list]
[/list]
Literature
[list]
[*]Lecture notes and slides can be downloaded here:
[list]
[*][url]http://www.spg.tu-darmstadt.de[/url]
[*]moodle
[/list]
[*]Further reading:
[list]
[*]Wes McKinney: Python for Data Analysis, O’Reilly, 2017
[*]Christopher M. Bishop: Pattern Recognition and Machine Learning, 2011
[*]James, Witten, Hastie and Tibshirani, Introduction to Statistical Learning, Springer, 2017
[/list]
[/list]
The course covers the following topics:
[list]
[*]Python programming basics
[*]Data science introduction
[*]Data storage and formats
[*]Data exploration and visualization
[*]Statistical methods and inference
[list]
[*]Descriptive statistics (uni & bivariate)
[*]Inferential statistics
[/list]
[*]Feature extraction
[list]
[*]Time Series Data
[*]Image data
[*]Audio data
[/list]
[*]Statistical learning
[list]
[*]Cross-validation, overfitting, annotation
[*]Regression
[*]Classification
[/list]
[/list]
Literature
[list]
[*]Lecture notes and slides can be downloaded here:
[list]
[*][url]http://www.spg.tu-darmstadt.de[/url]
[*]moodle
[/list]
[*]Further reading:
[list]
[*]Wes McKinney: Python for Data Analysis, O’Reilly, 2017
[*]Christopher M. Bishop: Pattern Recognition and Machine Learning, 2011
[*]James, Witten, Hastie and Tibshirani, Introduction to Statistical Learning, Springer, 2017
[/list]
[/list]
- Lehrende: DebesChristian
Semester: ST 2024