Lehrinhalte
Theorie von Discontinuous Galerkin Methoden; Beschränktheit, Stabilität, Konsistenz und Approximation; Upwinding, Limiter; Interior Penalty (IP), local DG (LDG), usw.; Implementierung und praktische Probleme (z.B. in Matlab)

Literatur
D. A. Di Pietro, A. Ern: Mathematical Aspects of Discontinuous Galerkin Methods (Book, Springer)
B. Riviere: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations (Book, SIAM)

Voraussetzungen
empfohlen: Einführung in die Numerische Mathematik oder vergleichbare Kenntnisse etwa aus einem Zyklus Mathematik für Ing.; Numerik Partieller Differentialgleichung (e.g.; Finite Elemente Method) von Vorteil, Grundlagen der Funktionalanalysis von Vorteil

Online-Angebote
moodle

Course Contents
Theory of Discontinuous Galerkin methods; Boundedness, Stability, Consistency, Approximation; Upwinding, Limiting; INterior Penalty (IP), local DG (LDG), aso.; Implementation and practical examples (e.g. in Matlab)

Literature
D. A. Di Pietro, A. Ern: Mathematical Aspects of Discontinuous Galerkin Methods (Book, Springer)
B. Riviere: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations (Book, SIAM)

Preconditions
recommended: required: Introduction to Numerical Analysis or similar knowledge as taught in an engineering programme;
useful courses: Numerical Analysis of Partial Differential Equations, Funcitonal Analysis

Online Offerings
moodle

Semester: SoSe 2024