Course Contents
Convergence of sequences of functions, power series, topology of metric spaces, norms on R^n, differentiation of functions of several variables, partial derivatives, rules of differentation, gradient, higher derivatives and Taylor`s theorem in several variables, local extrema, inverse and implicit function theorems, integration on R^n, curves in R^n, integral theorems of Gauß and Stokes
Literature
K. Königsberger: Analysis 1,2 , Springer
O. Forster: Analysis I & II. Vieweg
H. Heuser: Lehrbuch der Analysis 1, 2, Teubner.
W. Rudin: Principles of Mathematical Analysis, McGraw-Hill
Preconditions
recommended: Analysis 1
Online Offerings
moodle
Convergence of sequences of functions, power series, topology of metric spaces, norms on R^n, differentiation of functions of several variables, partial derivatives, rules of differentation, gradient, higher derivatives and Taylor`s theorem in several variables, local extrema, inverse and implicit function theorems, integration on R^n, curves in R^n, integral theorems of Gauß and Stokes
Literature
K. Königsberger: Analysis 1,2 , Springer
O. Forster: Analysis I & II. Vieweg
H. Heuser: Lehrbuch der Analysis 1, 2, Teubner.
W. Rudin: Principles of Mathematical Analysis, McGraw-Hill
Preconditions
recommended: Analysis 1
Online Offerings
moodle
- Lehrende: Gelöschter User
- Lehrende: Karsten Große-Brauckmann
- Lehrende: Philipp Käse
Semester: Verão 2024