Digital Teaching
[url]https://moodle.tu-darmstadt.de/course/view.php?id=39220[/url]
Course Contents
This course will be offered as self-study course in SoSe 2024. You can access the corresponding documents in the linked Moodle course.
[url]http://moodle.informatik.tu-darmstadt.de/course/view.php?id=595[/url]
- Statistical Methods for Machine Learning
- Refreshers on Statistics, Optimization and Linear Algebra
- Bayes Decision Theory
- Probability Density Estimation
- Non-Parametric Models
- Mixture Models and EM-Algorithms
- Linear Models for Classification and Regression
- Statistical Learning Theory
- Kernel Methods for Classification and Regression
Literature
1. C.M. Bishop, Pattern Recognition and Machine Learning (2006), Springer
2. K.P. Murphy, Machine Learning: a Probabilistic Perspective (expected 2012), MIT Press
3. D. Barber, Bayesian Reasoning and Machine Learning (2012), Cambridge University Press
4. T. Hastie, R. Tibshirani, and J. Friedman (2003), The Elements of Statistical Learning, Springer Verlag
5. D. MacKay, Information Theory, Inference, and Learning Algorithms (2003), Cambridge University Press
6. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification (2nd ed. 2001), Willey-Interscience
7. T.M. Mitchell, Machine Learning (1997), McGraw-Hill
Further Grading Information
[url=http://moodle.informatik.tu-darmstadt.de/course/view.php?id=595][url]https://moodle.tu-darmstadt.de/course/view.php?id=39220[/url][/url]
[url]https://moodle.tu-darmstadt.de/course/view.php?id=39220[/url]
Course Contents
This course will be offered as self-study course in SoSe 2024. You can access the corresponding documents in the linked Moodle course.
[url]http://moodle.informatik.tu-darmstadt.de/course/view.php?id=595[/url]
- Statistical Methods for Machine Learning
- Refreshers on Statistics, Optimization and Linear Algebra
- Bayes Decision Theory
- Probability Density Estimation
- Non-Parametric Models
- Mixture Models and EM-Algorithms
- Linear Models for Classification and Regression
- Statistical Learning Theory
- Kernel Methods for Classification and Regression
Literature
1. C.M. Bishop, Pattern Recognition and Machine Learning (2006), Springer
2. K.P. Murphy, Machine Learning: a Probabilistic Perspective (expected 2012), MIT Press
3. D. Barber, Bayesian Reasoning and Machine Learning (2012), Cambridge University Press
4. T. Hastie, R. Tibshirani, and J. Friedman (2003), The Elements of Statistical Learning, Springer Verlag
5. D. MacKay, Information Theory, Inference, and Learning Algorithms (2003), Cambridge University Press
6. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification (2nd ed. 2001), Willey-Interscience
7. T.M. Mitchell, Machine Learning (1997), McGraw-Hill
Further Grading Information
[url=http://moodle.informatik.tu-darmstadt.de/course/view.php?id=595][url]https://moodle.tu-darmstadt.de/course/view.php?id=39220[/url][/url]
- Lehrende: Theo Sunao Gruner
- Lehrende: An Le
- Lehrende: Daniel Palenicek
- Lehrende: Jan Peters
- Lehrende: Maximilian Tölle
- Lehrende: Theo Vincent
Semester: ST 2024