Lehrinhalte
1. Introduction
a. What is electronic structure
b. What determines the electronic structure
c. Properties determined by electronic structure
2. Reciprocal lattices
a. Atomic structure, periodicity
b. Brillouin zones
c. Symmetry notations
3. The free electron approximation of the band structure of solids
a. The free electron
b. Symmetry adapted band structure, extended and reduced zone scheme
c. Band structure of nearly-free electron metals: Na, Mg, Al
d. Number of electrons and the Hume-Rothery rules
e. Fermi energy and Fermi surfaces
4. Nearly-free electron band structure
a. Kronig penney model and origin of band gaps
5. Tight binding approach for band structures
a. Atomic orbitals and the periodic table
b. Harrison approach
c. Ionic vs. covalent description of electronic structure
d. Modern tight-binding: Wannier functions
e. Examples
6. Real band structures
7. Transition metal oxides
a. Crystal field and exchange splitting
b. Electron correlation effects
c. Charge transfer and Mott-Hubbard insulators
d. Examples
8. Advanced crystal and electronic structure models
a. Polytypism
9. Electrical properties of materials
a. Defects
b. Semiconductors, insulators, Ionic conductors, mixed ionic-electronic conductors
c. Carrier concentration and carrier mobility
d. Drude and Sommerfeldt model
e. Free and trapped charged carriers (polarons)
f. examples
10. Optical properties of materials
a. Fermi’s golden rule and selection rules
b. Direct and indirect energy gaps
c. Allowed and forbidden transitions
d. Excitons
11. Spectroscopic characterization
a. X-ray spectroscopy: XAS, RIXS, etc.
b. Electron spectroscopic techniques: XPS, (AR)UPS, EELS, …
c. Optical spectroscopy: IR, UV-VIS, Ellipsometry, two photon …
Other topics
• Peierls instability and charge density waves
• Jahn-Teller effect
Literatur
• J Singleton, Band theory and electronic properties of Solids (Oxford University Press, 2001).
• W A Harrison, Electronic structure and the properties of solids, (Dover Publications, New York, 1989).
• R Hoffmann, How Chemistry and Physics Meet in the Solid State, Angew. Chem. Int. Ed. 26, 846 (1987).
• R Hoffmann, A Chemist's View of Bonding in Extended Structures, (VCH, Weinheim, 1989).
• J J Zuckerman, Crystal field splitting diagrams, Journal of Chemical Education 42, 315 (1965).
• R Krishnamurthy, W B Schaap, Computing ligand field potentials and relative energies of d orbitals, Journal of Chemical Education 46, 799 (1969).
Voraussetzungen
For PhD students and postdocs of SFB FLAIR and master students from the Materials Sciene department
Online-Angebote
moodle
1. Introduction
a. What is electronic structure
b. What determines the electronic structure
c. Properties determined by electronic structure
2. Reciprocal lattices
a. Atomic structure, periodicity
b. Brillouin zones
c. Symmetry notations
3. The free electron approximation of the band structure of solids
a. The free electron
b. Symmetry adapted band structure, extended and reduced zone scheme
c. Band structure of nearly-free electron metals: Na, Mg, Al
d. Number of electrons and the Hume-Rothery rules
e. Fermi energy and Fermi surfaces
4. Nearly-free electron band structure
a. Kronig penney model and origin of band gaps
5. Tight binding approach for band structures
a. Atomic orbitals and the periodic table
b. Harrison approach
c. Ionic vs. covalent description of electronic structure
d. Modern tight-binding: Wannier functions
e. Examples
6. Real band structures
7. Transition metal oxides
a. Crystal field and exchange splitting
b. Electron correlation effects
c. Charge transfer and Mott-Hubbard insulators
d. Examples
8. Advanced crystal and electronic structure models
a. Polytypism
9. Electrical properties of materials
a. Defects
b. Semiconductors, insulators, Ionic conductors, mixed ionic-electronic conductors
c. Carrier concentration and carrier mobility
d. Drude and Sommerfeldt model
e. Free and trapped charged carriers (polarons)
f. examples
10. Optical properties of materials
a. Fermi’s golden rule and selection rules
b. Direct and indirect energy gaps
c. Allowed and forbidden transitions
d. Excitons
11. Spectroscopic characterization
a. X-ray spectroscopy: XAS, RIXS, etc.
b. Electron spectroscopic techniques: XPS, (AR)UPS, EELS, …
c. Optical spectroscopy: IR, UV-VIS, Ellipsometry, two photon …
Other topics
• Peierls instability and charge density waves
• Jahn-Teller effect
Literatur
• J Singleton, Band theory and electronic properties of Solids (Oxford University Press, 2001).
• W A Harrison, Electronic structure and the properties of solids, (Dover Publications, New York, 1989).
• R Hoffmann, How Chemistry and Physics Meet in the Solid State, Angew. Chem. Int. Ed. 26, 846 (1987).
• R Hoffmann, A Chemist's View of Bonding in Extended Structures, (VCH, Weinheim, 1989).
• J J Zuckerman, Crystal field splitting diagrams, Journal of Chemical Education 42, 315 (1965).
• R Krishnamurthy, W B Schaap, Computing ligand field potentials and relative energies of d orbitals, Journal of Chemical Education 46, 799 (1969).
Voraussetzungen
For PhD students and postdocs of SFB FLAIR and master students from the Materials Sciene department
Online-Angebote
moodle
- Lehrende: Jan Philipp Hofmann
- Lehrende: Andreas Klein
- Lehrende: Hongbin Zhang
Semester: SoSe 2024