Course Contents
Real and complex numbers, completeness, convergence of sequences and series, topology of the real numbers, compactness, notion of a function, continuity, elementary functions, differentiation, Mean Value Theorem, Taylor’s Theorem, integral, Fundamental Theorem of Calculus, techniques of integration
Literature
H.-D. Alber: Analysis I: Lecture Notes (2017, english)
Additionally:
O. Forster: Analysis I, II. Vieweg
H. Heuser: Lehrbuch der Analysis 1, 2, Teubner
K. Königsberger: Analysis 1, 2, Springer
Charles R. MacCluer, Honors Calculus, Princeton Univ. Press
W. Rudin: Principles of Mathematical Analysis, McGraw-Hill
Preconditions
none
Online Offerings
moodle
- Lehrende: Ulrich Kohlenbach
- Lehrende: Nicholas Pischke
Semester: Inverno 2024/25