Lehrinhalte
[list]
[*]Jump Start into Atom Interferometry
[*]Wave Packets
[*]Atomic Diffraction
[*]Basics of Light-pulse Atom Interferometry
[*]Analytical Methods
[*]Relativistic Effects in Atom Interferometry
[/list]
Literatur
[u][b]Atominterferometrie[/b][/u]
[list]
[*]G. M. Tino and M .A. Kasevich (eds) "Atom Interferometry" (IOS Press, 2014)
[*]E. Arimondo, W. Ertmer, W. P. Schleich, E. M. Rasel (eds) "Atom Optics and Space Physics" (IOS Press, 2009)
[*]Paul R. Berman - Atom Interferometry (Academic Press, 1997)
[*]V. F. Sears, "Neutron Optics" (Oxford University Press, 1989)
[*]T. Byrnes and E. O. Ilo-Okeke, "Quantum Atom Optics – Theory and applications to quantum technology," to appear Cambridge University Press, arXiv2007.14601
[*]H. Rauch and S. A. Werner, "Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-particle Duality, and Entanglement" (Oxford University Press, 2015)
[*]M. Utsuro and V. K. Ignatovich, "Handbook of Neutron Optics" (Wiley-VCH, 2010)
[*]M. Suda, "Quantum Interferometry in Phase Space: Theory and Applications" (Springer, 2006)
[/list]
[b][u]Allgemeine Literatur[/u][/b]
[b]Quanten- und klassische Optik[/b]
[list]
[*]D. A. Steck, "Classical and Modern Optics" (University of Oregon, 2019) Link: http://atomoptics-nas.uoregon.edu/~dsteck/teaching/quantum-optics/
[*]D. A. Steck, "Quantum and Atom Optics" (University of Oregon, 2019) Link: http://atomoptics-nas.uoregon.edu/~dsteck/teaching/optics/
[*]G. Grynberg, A. Aspect, and C. Fabre, "Introduction to Quantum Optics" (Cambridge University Press, 2010)
[*]W. P. Schleich, "Quantum Optics in Phase Space (Wiley-VCH, 2001)
[/list]
[b]Quantenmechanik[/b]
[list]
[*]D. A. Steck, "Quantum Mechanics" (University of Oregon, 2019) Link: http://atomoptics-nas.uoregon.edu/~dsteck/teaching/quantum-mechanics/
[*]C. Cohen-Tannoudji, B. Diu, and F. Laloe, "Quantum Mechanics, Vol. I and II" (Wiley, 1977)
[*]R. P. Feynman and A. R. Hibbs, "Quantum Mechanics and Path Integrals" (Dover Books on Physics, 2010)
[/list]
Voraussetzungen
Klassische Mechanik, Quantenmechanik, klassische Elektrodynamik; Höhere Quantenmechanik nützlich aber nicht notwendig
Weitere Informationen
Die Veranstaltung wird auf Englisch gehalten, falls internationale Studierende teilnehmen. Die Übungen werde über Moodle organisiert.
[b]Kurzzusammenfassung (Englisch):[/b]
Quantum mechanics allows for matter to move in a superposition of different trajectories through space and time. Information about the motion can be deduced from interference effects. Transferring this principle to quantum technologies, atom interferometers have become high-precision inertial sensors. This lecture presents atom interferometry from a theoretical perspective: Starting at the dynamics of atomic wave packets in external potentials, via atom-light interaction to manipulate the matter waves, to the sensitivity to fundamental relativistic effects, the covered topics guide students towards state-of-the-art research.
Online-Angebote
moodle
- Lehrende: Enno Giese

- Lehrende: Oliver Boine-Frankenheim
- Lehrende: Joachim Enders
- Lehrende: Norbert Pietralla
Lehrinhalte
Die Vorlesung bietet eine Einführung in die Grundlagen der Physik (Teil II „Mechanische und elektromagnetische Schwingungen und Wellen“) für Studienanfänger. Insbesondere werden folgende Themen behandelt:
Kapitel 1: Mechanische Schwingungen
Kapitel 2: Elektrostatik
Kapitel 3: Elektrischer Strom
Kapitel 4: Statische Magnetfelder
Kapitel 5: Zeitlich veränderliche elektromagnetische Felder
Kapitel 6: Elektromagnetische Schwingungen und Wellen
Literatur
Die Vorlesung richtet sich insbesondere nach:
W. Demtröder „Experimentalphysik“ (Band 1-4)
Weitere Lehrbücher sind:
D. Halliday „Physik“
D.C. Giancoli „Physik“
u.a.m.
Die Lehrbücher decken mehr als nur den Stoff aus Physik II ab.
Voraussetzungen
Physik I bzw. entsprechender Vorkurs empfohlen
Online-Angebote
moodle
- Lehrende: Thomas Halfmann