Wyniki wyszukiwania: 24

Official Course Description
Density functional theory (DFT) is one of the most frequently used
computational tools for studying and predicting the properties of
isolated molecules, bulk solids, and material interfaces, including
surfaces.
In this lecture the basic theoretical underpinnings and concepts underlying DFT calculations are introduced.
Practical applications of DFT are discussed and hands-on training is provided
using the open-source code GPAW.
The
course is well-suited for students of materials science, physics and
chemistry who want to use DFT in their work, but who do not require
extensive knowledge of theory and mathematical details.

Literature

  • https://wiki.fysik.dtu.dk/gpaw/index.html
  • Kohanoff, Electronic structure calculations for solids and molecules
  • Koch/Holthausen, A chemist's guide to denisty functional theory
  • D. Sholl, J. A. Steckel, "Density Functional Theory: A Practical Introduction", Wiley 2009

Requirements
Background in materials science, physics or chemistry on the bachelor level.


Expected number of participants
10

Online Offerings
moodle

 
 
Semester: ST 2024
Online-Angebote
moodle

Semester: WT 2022/23
Online-Angebote
moodle

Semester: WT 2023/24
Digitale Lehre
moodle

Online-Angebote
moodle

Semester: WT 2020/21

Voraussetzungen
Electrical Engineering and Information Technology I, Electrical Engineering and Information Technology
II, Laboratory ETiT, Laboratory Electronics, Mathematics I, Mathematics II, Physics

Bemerkung Webportal
Microelectronics has become an essential factor and it is impossible to imagine everday life without it.
Which semiconductor devices does a integrated circuit contain?
How do they work? What is a MOSFET?
This lecture announces the student to the fundamental properties of semiconductor materials and the semiconductor devices manufactured out of them.
Beside operation principles of semiconductor devices simple applications like amplifier, inverter and MOS-memory are highlighted. An outlook on the future development of microelectronics completes the lecture.

[*]PIN-Junction
[*] S.M. Sze, K.K. Ng: Physics of Semiconductor devices. 3rd edition, John Wiley & Sons 2007, ISBN: 0-471-14323-5
[/list]
Vertiefende Literatur:
[list=1]
[*]H. Ibach, H. Lüth: Festkörperphysik, 7. Auflage, Springer 2009, e-ISBN 978-3-540-85795-2
[*]Robert F. Pierret: Semiconductor Device Fundamentals, ISBN 0201543931
[*]Roger T. How, Charles G. Sodini: Microelectronics - an Integrated Approach, ISBN 0135885183
[*]Richard C. Jaeger: Microelectronic Circuit Design, ISBN 0071143866
[*]Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices, ISBN 0521559596
[*]Thomas Tille, Doris Schmidt-Landsiedel: Mikroelektronik, ISBN 3540204229
[*]Michael Reisch: Halbleiter-Bauelemente, ISBN 3540213848
[/list]

Voraussetzungen
Elektrotechnik und Informationstechnik I, Elektrotechnik und Informationstechnik II, Praktikum ETiT, Praktikum Elektronik, Mathematik I, Mathematik II, Physik

Bemerkung Webportal
Die Mikroelektronik ist aus unserem Alltag nicht mehr wegzudenken. Aus welchen Halbleiterbauelementen besteht nun eine integrierte Schaltung?
Und wie funktionieren diese Bauelemente? Was ist ein MOSFET?
Diese Vorlesung macht den Hörer mit den wesentlichen Eigenschaften von Halbleitermaterialien und den daraus hergestellten mikroelektronischen Bauelementen vertraut.
Neben der Funktionsweise der Halbleiterbauelemente werden auch einfache Anwendungen, wie Verstärker, Inverter und MOS-Speicher behandelt. Ein Ausblick auf die zukünftige Entwicklung der Mikroelektronik beschließt die Vorlesung.

Online-Angebote
Moodle

Semester: WT 2018/19
Lehrinhalte
Special conditions in design and construction of masonry will be
discussed.Special concepts of design will be shown as well as
construction details of masonry structures. The practical part of
the course supports the theoretical background with exercises.

The lecture includes:
- Basis of raw materials behaviour in Masonry
- Measure of reinforced and none-reinforced Masonry according EC 6
- Special component and details of constructions
- Masonry prefabricated parts
- Plaster on Masonry
- Basis of Building Physics

Literature
Lecture and Exercise Script TU Darmstadt, Institut für Massivbau
Mauerwerk-Kalender (jährliche Erscheinung) Ernst & Sohn Verlag, Berlin
Eurocode 6 - Kommentierte Fassung, Beuth, Berlin
Fachbuch für Architekten, Bauingenieure und Studierende, Kalksandstein
Informations GmbH Co. KG Hannover
Verschiedene Informationsbroschüren der Mauersteinindustrie zur Bemessung
und baulichen Durchbildung

Semester: ST 2021
Lehrinhalte
Special conditions in design and construction of masonry will be
discussed.Special concepts of design will be shown as well as
construction details of masonry structures. The practical part of
the course supports the theoretical background with exercises.

The lecture includes:
- Basis of raw materials behaviour in Masonry
- Measure of none-reinforced Masonry according DIN 1053-1
- Measure of none-reinforced Masonry according EC 6
- Measure of reinforced Masonry according DIN 1053-1
- Special component and details of constructions
- Masonry prefabricated parts
- Plaster on Masonry
- Basis of Building Physics

Literatur
Lecture Script and Exercise Script WS 2004 / 2005, 2. Auflage, TU Darmstadt,
Institut für Massivbau
Mauerwerk-Kalender (jährliche Erscheinung) Ernst & Sohn Verlag, Berlin
DIN 1053-1 Mauerwerk; Berechnung und Ausführung,
Fachbuch für Architekten, Bauingenieure und Studierende, Kalksandstein
Informations GmbH Co. KG Hannover
verschiedene Informationsbroschüren der Mauersteinindustrie zur Bemessung
und baulichen Durchbildung

Voraussetzungen
(prediploma)

Semester: ST 2020

Digitale Lehre
Digitale Kursmaterialien; Interaktive Tutorials und Programmierbeispiele (mit MATLAB, Python, TensorFlow, Jupyter, GitHub, ...)

Lehrinhalte
[list]
[*]Physikbewusstes maschinelles Lernen (ML) vereint klassische, physikbasierte Modellierungs­ansätze mit ML-Methoden, um die Generalisierungsfähigkeiten, Interpretierbarkeit, Robustheit, Verlässlichkeit und Effizienz von ML-Methoden in Ingenieursanwendungen zu verbessern
[*]Einführung in ML-Methoden und deren wesentliche theoretische Eigenschaften, darunter insbes. künstliche neuronale Netze (Approximationsfähigkeiten, Training, Gradienten, etc.)
[*]Grundlagen der physikbasierten Modellierung und Simulation mittels Differentialgleichungen und geeigneter Zeit- und Orts-Diskretisierungsverfahren (z.B. Zeitintegration und Finite Elemente)
[*]Physikbasierte und datengetriebene Modellreduktion und Surrogat-Modellierung (z.B. Modalanalyse, orthogonale Zerlegungen, Kriging, Kernel-Methoden, u.Ä.)
[*]Mathematische Wissensrepräsentationen von Erhaltungsgleichungen & -größen, Symmetrien, Invarianzen, usw. für physikbewusstes ML
[*]Konstruktionsprinzipien zur Information oder Augmentierung von ML-Methoden durch entsprechende Gestaltung von Trainingsdaten, Hypothesen für Eingangs- und Ausgangsgrößen der ML-Modelle, ML-Modellarchitekturen, oder Lern- bzw. Trainingsalgorithmen
[*]Methoden umfassen z.B. Sobolev-Training, konvexe & monotone NN, physikinformierte NN (PINNs), Langrangesche NN, neurale Operatoren, stochastische NN, rekurrente NN, faltende NN, Graphen-NN, Autoencoder, generative NN, Gaußsche Prozesse & Kernel-Methoden, u.Ä.
[*]Anwendungen und Beispiele für Festkörpermechanik, Strukturdynamik, Materialmodellierung, dynamische Systeme, Multiskalen- und Multiphysik-Probleme, (additive) Fertigungsprozesse, digitale Zwillinge, u.Ä.
[/list]

Voraussetzungen
Grundkenntnisse in Maschinellem Lernen, physikalischer Modellierung und numerischer Simulation (insbes. Differentialgleichungen, Zeitintegration, Finite Elemente) sind empfohlen.
Erfahrung mit maschinellem Lernen und Programmierkenntnisse sind vorteilhaft, aber nicht zwingend erforderlich.

Offizielle Kursbeschreibung
Nach erfolgreichem Abschluss des Moduls sollten die Studierenden in der Lage sein:
1.    Anwendungsmöglichkeiten für physikbewusstes maschinelles Lernen in der ingenieur­wissenschaftlichen Modellierung und Simulation zu kennen und identifizieren zu können
2.    Physikalische und mathematische Eigenschaften wie Energieerhaltung, Symmetrien, Invarianzen und Lösbarkeitsanforderungen mathematisch zu formalisieren
3.    Grundlegende Ansätze und Algorithmen des physikbewussten ML beschreiben, erläutern und diskutieren zu können
4.    Passende physikinformierte und physikaugmentierte Modellarchitekturen mit neuronalen Netzen für verschiedene Anwendungsfelder erläutern und evaluieren zu können
5.    Die verbesserten Generalisierungsfähigkeiten, Interpretierbarkeit, Robustheit, Verlässlichkeit und Effizienz von physikbewussten ML-Konzepten erläutern und erklären zu können

Online-Angebote
Moodle

Digital Teaching
Digital course materials; Interactive tutorials and programming examples (with MATLAB, Python, TensorFlow, Jupyter, GitHub, ...)

Course Contents
[list]
[*]Physics-aware machine learning (ML) combines classical, physics-based modeling approaches with ML methods to improve the generalization capabilities, interpretability, robustness, reliability and efficiency of ML methods in engineering applications
[*]Introduction to ML methods and their essential theoretical properties, including in particular artificial neural networks (approximation capabilities, training, gradients, etc.)
[*]Foundations of physics-based modeling and simulation using differential equations and suitable temporal and spatial discretization methods (time integration and finite elements)
[*]Physics-based and data-driven model order reduction and surrogate modeling (e.g. modal analysis, orthogonal decompositions, kriging, kernel methods, etc.)
[*]Mathematical knowledge representations of conservation equations & quantities, symmetries, invariances, etc. for physics-aware ML
[*]Construction principles for informing or augmenting ML methods through appropriate design of training data, hypotheses for input and output variables of ML models, ML model architectures, or learning or training algorithms
[*]Methods include e.g. Sobolev training, convex & monotonic NNs, physics-informed NNs (PINNs), Langrangian NNs, neural operators, stochastic NNs, recurrent NNs, convolutional NNs, graph NNs, autoencoders, generative NNs, Gaussian processes & kernel methods, etc.
[*]Applications and examples for solid mechanics, structural dynamics, material modeling, dynamic systems, multiscale and multiphysics problems, (additive) manufacturing processes, digital twins, etc.
[/list]

Preconditions
Basic knowledge on machine learning, physical modelling, and numerical simulation (in particular differential equations, time integration, finite elements) is recommended.
Experience with machine learning and programming skills are advantageous, but not essential.

Official Course Description
On successful completion of this module, students should be able to:
1.    Know and identify possible applications for physics-aware machine learning in engineering modeling and simulation
2.    Mathematically formalize physical and mathematical properties such as energy conservation, symmetries, invariances, and solvability requirements
3.    Describe, explain and discuss basic approaches and algorithms of physics-aware ML
4.    Explain and evaluate suitable physics-informed and physics-augmented model architectures with neural networks for various fields of application
5.    Describe and explain the improved generalization capabilities, interpretability, robustness, reliability, and efficiency of physics-aware ML concepts

Online Offerings
Moodle

Semester: ST 2024
Course Contents
A basic introduction into civil-engineering-related physics topics. A special
emphasis is put on areas of physics not covered by other courses such as
technical mechanics:
[list]
[*]Physical quantities
[*]Classical interactions: Gravity
[*]Classical interactions: Electrodynamics
[*]Oscillations
[*]Waves
[*]Fluids
[*]Thermodynamics
[*]Optics
[/list]
The lecture is offered as a 4-hour course with live experiments during 3/4 of the term. In addition to the lecture course, extended execises (Übungen) with problem-solving and exam-preparation is offered.

Literature
There are numerous textbooks on introductory physics for scientists and engineering students.  Among those in English language are, e.g.:
[list]
[*]Giancoli: Physics for Scientists & Engineers
[*]Halliday, Resnick, Walker: Fundamentals of Physics
[*]Tipler, Mosca: Physics for Scientists and Engineers
[/list]
Additionally, study materials in German will be published on the Moodle page of this course.

Preconditions
Basic calculus and technical mechanics. Knowledge of basic physics concepts that are typically part of the curriculum in Physics for the Abitur. To test yourself in these basic concepts or to acquire them, a physics bridging course will be available in the moodle classroom.

Expected Number of Participants
200

Further Grading Information
The exercises are a [i]Studienleistung[/i]. They will help you to gain a deeper insight into the topics of the lecture. They are a very good preparation for the final exam.

[b]Requirements for [i]Studienleistung[/i]:[/b]
(prerequisite for successfully taking part in exam)
will be announced in first lecture

[b]Requirements for [i]Fachprüfung[/i]:[/b] passing final exam

[b]Permitted aids [/b]for the final exam (and the preliminary exam) are
[list]
[*]1 hand-written personal collection of important formulas:
1 page DIN A4 both sides, any information is allowed
[*]a calculator (no computer algebra CAS, and no smartphone)
[*]ruler (Geodreieck)
[*]permanent pen
[/list]
Devices with network communication are not allowed.

Übertragungswege
The class will be held in-person, but hybrid access is foreseen, likely via Zoom.  Zoom access information will be published on the moodle page.

Official Course Description
[list]
[*]Students possess a broad knowledge in fundamental aspects of physics.
[*]Students are capable of applying fundamental methods in natural sciences to selected challenges in engineering.
[*]Students are competent in discussing the results of their work in the context of natural-science methods.
[/list]

Additional Information
To apply for participation in exercice groups to receive the 'Studienleistung', please register in TUCaN until Friday, April 19, 2024, noon.

In case you have already acquired the 'Studienleistung' in previous years, it is still desirable that you participate in the excercies. Here you can also gain a Bonus for the 'Klausur'. To do so, you also have to apply for participation until Friday, April 19, 2024, noon, but since you will not be able to register directly in TUCaN, contact[b] [/b][b]studienbuero@bauing.tu-darmstadt.de[/b] and let them know in which group you want to be subscribed.
 

Risk Assessment
This lecture is offered in hybrid mode.
[list]
[*]Avoid rigid postures and make sure to use breaks for moving regularly.
[*]Use the online option in case you are sick, infected, quarantined, or if you have special medical needs.
[*]Also when working from home, please make sure you move regularly, in particular before and after class.
[*]Please make sure to care about a healthy working position.
[*]The lecture hall and rooms can be reached by stairs or have stairs in them.  Please watch your step.
[*]For the unlikely event of an evacuation (fire, smoke, threat, emergencies), please inform yourself before the start of the course about the publicly posted escape routes.  Follow the posted evacuation signs.
[*]Should you realize an emergency (fire, smoke, threat, medical emergency etc.), please inform the responsible teacher immediately.
[/list]

Sustainability Reference of the Course Contents
The course addesses, among other things, fundamentals of thermodynamics and electromagnetism.  Concepts like efficiency factors, heat transport, and energy conversion are addressed, which are central elements of discussing sustainability in energy science.

Online Offerings
Moodle

Additional Information
Further information as well as presentations and excercises will be available through moodle.
Please use your TU-ID for login. A keyphrase is not neccesary.
http://moodle.tu-darmstadt.de

Kategoria: FB05 Physik
Semester: ST 2024
Digitale Lehre
Moodle
http://moodle.tu-darmstadt.de

Lehrinhalte
[b]Physical Quantities[/b]
- Measurements

[b]Classical Mechanics[/b]
- Kinematics and dynamics
- Work and energy
- Rotational motion
- Rigid bodies

[b]Oscillations and Waves[/b]
- Free, damped, and driven oscillations
- Superposition of oscillations
- Harmonic waves
- Superposition of waves

Literatur
The lecture relates to the textbook
[i]E. Hering, R. Martin, M. Stohrer,
Physik für Ingenieure
Springer-Verlag, Berlin and Heidelberg, (present 12. ed.)[/i]

An electronic version of this book (in German) is accessible free of charge from within TU Darmstadt's internet access points via the Universitäts- und Landesbibliothek or via a VPN client.
Beyond this book there are numerous other textbooks on introductory physics.  Among those in English language are:
[list]
[*]Giancoli: Physics for Scientists and Engineers with Modern Physics
[*]Halliday, Resnick: Fundamentals of Physics
[*]Tipler: Physics
[/list]
In addition, material (in German) will be provided.

Voraussetzungen
Curiosity.

If you have only little knowledge about physics from high school, please consider using additional material prior to the start of the regular lectures.  Materials will be made available via the moodle page of this course.

Erwartete Teilnehmerzahl
240

Further Grading Information
This remote-learning course is based on the inverted-classroom method and peer instruction.  The concept is based on the requirement that students independently study the fundamental contents covered in this course.  To this end, we will make materials available (in German) via the moodle page containing a short manuscript, literature listings, videos, and problem sets.

The "online session" - scheduled during the regular time of the lecture - will be used to identify and address open questions, compile learning outcomes, partially as quizzes, discuss in small groups and guided by learning assistants conceptual questions related to the topic.

Official Course Description
Students
[list]
[*]know basic notions, methods, and concepts of classical mechanics
[*]are capable of following through a scientific argument related to classical meachanics,
[*]are able to apply their basic knowledge in classical mechanics on solving specific problems quantitatively and to explain phenomena and applications of mechanical nature.
[/list]

Zusätzliche Informationen
Additional recitation sessions are offered online via the moodle page.  It is possible to improve the overall grade of this course through submission of part of the homework.

Gefährdungsbeurteilung
This is an all-online class.
[list]
[*]Please make sure you move regularly, in particular before and after class.
[*]Please make sure you care about a healthy working position.
[/list]

Online-Angebote
Moodle

Kategoria: FB05 Physik
Semester: WT 2020/21